Reference Research
-
Birot, S., Crépet, A., Remington, B. C., Madsen, C. B., Kruizinga, A. G., Baumert, J. L., & Brockhoff, P. B. (2019). Frequentist and bayesian approaches for food allergen risk assessment: Risk outcome and uncertainty comparisons. Scientific Reports, 9(1). https://doi.org/10.1038/s41598-019-54844-1
-
Bloom, D. (n.d.). Barcode Scanning Apps: What They Don't Know CAN Hurt You. SnackSafely. https://snacksafely.com/2014/12/barcode-scanning-apps-what-they-dont-know-can-hurt-you/
-
Callaghan, S., Malik, A., Teichner, W., & Panossian, M. (n.d.). Consumers with food allergies: A growing market remains underserved. McKinsey and Company. https://www.mckinsey.com/industries/consumer-packaged-goods/our-insights/consumers-with-food-allergies-a-growing-market-remains-underserved Food Allergy Facts and Statistics for the U.S. (2022). Facts and Statistics -- Food Allergy. https://www.foodallergy.org/resources/facts-and-statistics
-
Grubert, O., & Gao, L. (n.d.). Recognition of Nutrition Facts Labels from Mobile Images. Stanford University. https://stacks.stanford.edu/file/druid:bf950qp8995/Grubert_Gao.pdf
-
Harnly, J. (n.d.). Methods and Application of Food Composition Laboratory: Beltsville, MD. USDA Branded Food Products Database.
-
Liu, A. H., Stat, R. J. M., Sicherer, S. H., Wood, R. A., Bock, S. A., Burks, A. W., Massing, M., Cohn, R. D., & Zeldin, D. C. (n.d.). National Prevalence and Risk Factors for Food Allergy and Relationship to Asthma: Results from the National Health and Nutrition Examination Survey 2005-2006. National Institute of Health. https://pubmed.ncbi.nlm.nih.gov/20920770/
-
Loh, W., & Tang, M. (2018). The epidemiology of food allergy in the global context. International Journal of Environmental Research and Public Health, 15(9), 2043. https://doi.org/10.3390/ijerph15092043
-
Majumder, B. P., Li, S., Ni, J., & Mcauley, J. (n.d.). Generating personalized recipes from historical user preferences. arxiv.org. https://doi.org/10.48550/arXiv.1909.00105 Mandracchia, F., Llauradó, E., Tarro, L., Valls, R. M., & Solà, R. (2020). Mobile phone apps for food allergies or intolerances in app stores: Systematic search and quality assessment using the mobile app rating scale (MARS). JMIR MHealth and UHealth, 8(9), e18339. https://doi.org/10.2196/18339
-
Nebraska DHHS Maternal Infant Health. (n.d.). Food Allergen Graph: Avoiding Peanut, Tree Nuts, Egg, Corn, and Wheat Ingredients. Nebraska Department of Health and Human Services. https://dhhs.ne.gov/MCAH/MI-OtherFoodAllergens-Graph.pdf
-
Plasek, J. M., Goss, F. R., Lai, K. H., Lau, J. J., Seger, Diane L., Blumenthal, K. G., Wickner, P. G., Slight, S. P., Chang, F. Y., Topaz, M., Bates, D. W., & Zhou, L. (2015). Food entries in a large allergy data repository. Journal of the American Medical Informatics Association, 23(e1), e79-e87. https://doi.org/10.1093/jamia/ocv128 Sowmiya, B., Ramaswamy, R., & Shukla, T. (2019). Analysing food allergy dataset to predict different types of allergies. Journal of Physics: Conference Series, 1362(1), 012010. https://doi.org/10.1088/1742-6596/1362/1/012010
-
Sutrisno, A. T., Yulianti, L. P., & Harlili. (2021). Designing interaction of food allergy information application using user-centered design approach: Gojek case study. Journal of Physics: Conference Series, 1803(1), 012028. https://doi.org/10.1088/1742-6596/1803/1/012028
-
Takao, M. M. V., Carvalho, L. S. F., Silva, P. G. P., Pereira, M. M., Viana, A. C., Da silva, M. T. N., & Riccetto, A. G. L. (2022). Artificial intelligence in allergy and
-
immunology: Comparing risk prediction models to help screen inborn errors of immunity. International Archives of Allergy and Immunology, 183(11), 1226-1230. https://doi.org/10.1159/000526204